751

NOTES

ANTIBIOTIC Bu-2545, A NEW MEMBER OF THE CELESTICETIN-LINCOMYCIN CLASS

MINORU HANADA, MITSUAKI TSUNAKAWA, Koji Tomita, Hiroshi Tsukiura and Hiroshi Kawaguchi

Bristol-Banyu Research Institute, Ltd. Meguro, Tokyo, Japan

(Received for publication April 4, 1980)

In the course of screening for new antibiotics active against anaerobic bacteria, a *Streptomyces* strain No. H230-5 that had been isolated from a soil sample collected in England was found to produce a new antibiotic. This agent, designated as Bu-2545, was active against anaerobic organisms as well as aerobic Gram-positive bacteria. Antibiotic Bu-2545 is structurally related to celesticetin¹⁾ and lincomycin²⁾, having structural units in common with these two antibiotics. This paper describes the producing organism, and the isolation, properties and structure of Bu-2545.

Streptomyces strain No. H230-5 forms white or yellowish white aerial mycelia and straight or flexuous spore chains. The spores are oval or cylindrical in shape and have a smooth surface. It does not produce melanin or a non-melanoid pigment. Strain H230-5 utilizes D-xylose, Dglucose, D-fructose, D-galactose, inositol and Dmannitol, but not L-arabinose, L-rhamnose, raffinose or sucrose. According to the descriptions in Bergey's Manual (8th ed., 1974), strain H230-5 should be placed in the species group, rectus flexibilis, white series, non-chromogenic and smooth spore surface, which includes seven species. Among the seven species, strain H230-5 is considered to be most similar to Streptomyces aureocirculatus, a species first reported by KRASILNIKOV and YUAN³⁾ and further described by SHIRLING and GOTTLIEB⁴⁾.

Antibiotic Bu-2545 was produced in 500-ml Erlenmeyer flasks using a medium composed of 2% glycerol, 0.5% beet molasses, 0.5% peptone, 0.5% linseed meal and 0.5% CaCO₃. The flasks were shaken on a rotary shaker (250 rpm) at

 27° C for 4 days. The antibiotic activity in the fermentation broth was determined by a paper disc-agar plate method using *Bacillus subtilis* PCI 219 as the test organism.

The harvested fermentation broth was filtered and adjusted to pH 7.0. The antibiotic activity in the filtrate was adsorbed on Diaion HP-20 and eluted with 80% acetone. The active eluate was evaporated under reduced pressure, and the resultant aqueous concentrate was extracted with n-butanol at pH 10. The active butanol extract was added to acidic water at pH 2.0. The antibiotic agent was then back-extracted into methylene chloride at pH 10. Evaporation of the solvent gave a crude solid of Bu-2545 which was purified by silica gel column chromatography developed with a mixture of benzene - methanol Active fractions were combined, con-(6:1).centrated in vacuo and finally lyophilyzed to afford a white powder of Bu-2545 as the free base.

Bu-2545 is a basic substance with a pKa' of 8.1 in water. It is soluble in lower alcohols, ethyl acetate, methylene chloride and acidic water but insoluble in *n*-hexane and alkaline water. It is optically active: $\left[\alpha\right]_{\rm p}^{24} + 140^{\circ}$ (c 0.5, CHCl₂). The molecular weight of Bu-2545 (free base) as determined by in-beam EI mass spectroscopy was 378 (M+1: m/e 379). The oxalate of Bu-2545 was obtained as colorless crystals (m.p. 201 ~ 202°C) which was analyzed as $C_{16}H_{10}N_2O_6$ S·(COOH)₂. Calc'd: C 46.16, H 6.88, N 5.98, S 6.88. Found: C 46.30, H 7.23, N 5.98, S 6.33. The UV spectrum of Bu-2545 did not show a maximum between 210 and 360 nm, and the IR spectrum included absorptions of amide bands at 1660 and 1530 cm⁻¹, and an NH and/or OH band at around 3300 cm⁻¹. The NMR spectrum (60 MHz, D_2O) of the sulfate showed signals assignable to $CH-CH_{3}$ (δ 1.17, 3H, d, J=6), S-CH₂ (δ 2.16, 3H, s), N-CH₃ (δ 2.95, 3H, s) and O- CH_3 (δ 3.40, 3H, s), and indicated the presence of an anomeric proton (δ 5.33, 1H, d, J=5.5).

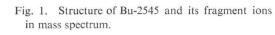

The analytical and spectroscopic data of Bu-2545 described above suggested that the structure of Bu-2545 should be closely related to that of lincomycin²⁾, except for the presence of an O-CH₃ group in Bu-2545 and an *n*-propyl group in lincomycin. The mass spectrum of Bu-2545

Table	1.	TLC	comparison	of	Bu-2545,	lincomycin
and	cele	sticeti	n.			

	System I	System II	
Bu-2545	0.15	0.38	
Lincomycin	0.36	0.55	
Celesticetin	0.36	0.40	

System I: Silica gel, BuOH - HOAc - H₂O (3:1:1)System II: Silica gel, Benzene - MeOH (1:1)

showed diagnostic fragment ion peaks at m/e331, 229 and 84 whose assignments are shown in Fig. 1. These fragment ions were also observed in the mass spectra of celesticetins⁵⁾. Thus the structure shown in Fig. 1 was assigned to Bu-2545. The major structural skeleton of the Bu-2545 molecule (non-substituted hygric acid moiety and celestosamine) is the same as that of celesticetin, while Bu-2545 has the same methylthio substituent as lincomycin at the C-1 position. Bu-2545 was differentiated from lincomycin or celesticetin by two TLC systems as shown in Table 1.

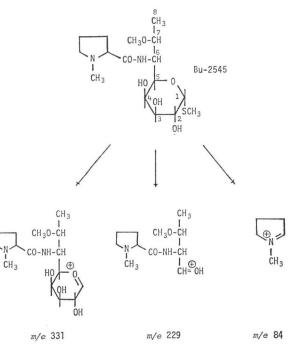


Table 2. Antibacterial activity of Bu-2545.

Test organism		Test	MIC (mcg/ml)	
		medium*	Bu-2545	Lincomycir
	Bacteroides fragilis A20926	GAM	6.3	1.6
	" " A20928–1	n	1.6	0.8
	Fusobacterium varium ATCC 8501	"	12.5	0.8
Anaerobes	Veillonella parvula ATCC 17745	17	3.1	0.4
	Clostridium chauvoei A9651	n	12.5	0.4
	Clostridium perfringens A9635	n	12.5	0.2
	Propionibacterium acnes A21933	"	12.5	3.1
	<i>n n</i> A21953	"	12.5	3.1
	Peptostreptococcus anaerobius B-43	"	12.5	3.1
	Peptococcus aerogenes ATCC 14963	"	12.5	3.1
	Staphylococcus aureus Smith	NA	6.3	0.4
	" " A20607**	"	> 100	>100
	Streptococcus pyogenes Dick	GC	12.5	0.05
Aerobes	Streptococcus pneumoniae Type I	"	12.5	0.1
	Hemophilus influenzae A9729	"	25	0.05
	Escherichia coli NIHJ	NA	>100	>100
	Klebsiella pneumoniae D11	"	>100	>100
	Pseudomonas aeruginosa D15	"	>100	>100

GAM: Gifu anaerobe medium (Nissui), NA: Nutrient agar (Eiken), GC: GC medium (Eiken).

** Macrolide-lincomycin resistant strain The antibacterial activity of Bu-2545 was determined by a two-fold agar dilution method against a variety of aerobic and anaerobic test organisms. As shown in Table 2, Bu-2545 inhibited growth of aerobic Gram-positive bacteria and various anaerobic microorganisms at concentrations generally below 12.5 mcg/ml. The aerobic Gram-negative bacteria tested were not inhibited at 100 mcg/ml. Lincomycin was tested comparatively as a reference agent and showed much greater antimicrobial potency than Bu-2545.

Bu-2545 was tested *in vivo* against experimental infections of *Staphylococcus aureus* Smith and *Clostridium perfringens* A9635. Mice were challenged intraperitoneally with a lethal dose of the pathogens in a 5% suspension of hog gastric mucin. The single intramuscular (im) PD₅₀ or protective dose, 50%, found for Bu-2545 was 50 mg/kg for *S. aureus* and 72 mg/kg for *C. perfringens*. Bu-2545 was non-toxic to mice at 400 mg/kg (im).

A number of celesticetin analogs^{5~8)} have been isolated from the fermentation broth of *S. caelestis* or its mutants, but none has an S-CH₃ substituent at the C-1 position of celestosamine. Although the complete stereochemistry of Bu-2545 has not been elucidated, the structure of Bu-2545 shown in Fig. 1 seems most likely from biosynthetic considerations and also from its optical rotation value (Bu-2545: $+140^{\circ}$, lincomycin: $+158^{\circ 2}$, celesticetin B: $+146^{\circ 51}$). Further evidence to support the assigned structure of Bu-2545 was recently obtained by C-13 NMR and degradation studies. These findings will be reported in a separate paper⁹.

References

- HOEKSEMA, H.; G. F. CRUM & W. H. DEVERIES: Isolation and purification of celesticetin. Antibiot. Ann. 1954/1955: 837~841, 1955
- HERR, R. R. & G. SLOMP: Lincomycin. II. Characterization and gross structure. J. Am. Chem. Soc. 89: 2444~2447, 1967
- KRASILNIKOV, N. A. & T. YUAN: The species composition of orange-colored actinomycetes. *In* N. A. KRASILNIKOV (*Ed.*), Biology of Individual Groups of Actinomycetes (in Russian), pp. 28~57, 1965
- SHIRLING, E. B. & D. GOTTLIEB: Cooperative descriptions of type cultures of *Streptomyces*. IV. Species descriptions from the second, third and fourth studies. Int. J. Syst. Bacteriol. 19: 391 ~ 512, 1969
- ARGOUDELIS, A. D. & T. F. BRODASKY: Studies with *Streptomyces caelestis*. I. New celesticetins. J. Antibiotics 25: 194~196, 1972
- ARGOUDELIS, A. D.; J. H. COATS, P. G. LEMAUX & O. K. SEBEK: Antibiotics produced by mutants of *Streptomyces caelestis*. I. 7-O-Demethylcelesticetin and its degradation products. J. Antibiotics 25: 445~455, 1972
- ARGOUDELIS, A. D.; J. H. COATS, P. G. LEMAUX & O. K. SEBEK: Antibiotics produced by mutants of *Streptomyces caelestis*. II. N-Demethylcelesticetin and N-demethyl-7-O-demethylcelesticetin. J. Antibiotics 26: 7~14, 1973
- ARGOUDELIS, A. D. & T. F. BRODASKY: Studies with *Streptomyces caelestis*. III. New antibiotics containing lincosamine or celestosamine. J. Antibiotics 27: 642~645, 1974
- 9) TODA, S.; S. NAKAGAWA, T. NAITO & H. KAWA-GUCHI: Structure of antibiotic Bu-2545. J. Antibiotics (to be published.)